rofesseur : Rachid BELEMOU

Cours

: Prince Moulay Abdellah Dérivation - étude de fonction Année : 2022-2023

Le Dérivabilité d'une fonction en un point x_0 – dérivabilité à droite et à gauche en un point x_0 :

A. Dérivabilité :

Définitions:

Soit une fonction f tel que son domaine de définition contient un intervalle ouvert I et $x_0 \in I$.

• f est dérivable au point $x_0 \Leftrightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \ell \in \mathbb{R}$. $\left(\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}\right) = \ell \in \mathbb{R}$ $\ell = f'(x_0)$ s'appelle

le nombre dérivé de f en x₀.

• f est dérivable à droite de $X_0 \Leftrightarrow \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = \ell_d \in \mathbb{R}$. $\left(\lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = \ell_d \in \mathbb{R} \quad \ell_d = f_d(x_0)\right)$

s'appelle le nombre dérivé à gauche de f en x_0 .

- f est dérivable à gauche de $X_0 \Leftrightarrow \lim_{x \to x_0^-} \frac{f(x) f(x_0)}{x x_0} = \underbrace{\ell_g}_{g} \in \mathbb{R} \cdot \left(\lim_{h \to 0^-} \frac{f(x_0 + h) f(x_0)}{h} = \underbrace{\ell_g}_{g} \in \mathbb{R} \cdot \ell_g = f_g'(x_0)\right)$
- s'appelle le nombre dérivé à gauche de f en x_0 .

** Exercices : 1,2 de la série

b. Propriété:

Soit une fonction f.

f est dérivable au point $x_0 \Leftrightarrow f$ est dérivable à droite et à gauche et $f_d^{'}(x_0)$ $f_g^{'}(x_0)$.

B. interprétation géométrique des nombres dérivées $f'(x_0)$ et $f_{d}'(x_0)$ et $f_{g}'(x_0)$

- Interprétation géométrique du nombre dérivée $f'(x_0)$:
 - f est une fonction dérivable au point x_0 .
 - ullet $\left(C_{f} \right)$ sa courbe représentative dans un repère $\left(O, \vec{i}, \vec{j} \right)$.
 - \Leftrightarrow Le nombre dérivé f' (x_0) est le coefficient directeur de la droite tangente (T) à la courbe (C) de f au point $A(x_0, f(x_0))$ (le point x_0).
 - * Equation cartésienne de la tangente (T) à la courbe (C_f) de f au point $A(x_0, f(x_0))$ est (T): $y = (x - x_0)f'(x_0) + f(x_0)$.
 - ❖ Si f'(x) = 0 alors la tangente est parallèle à l'axe des abscisse.

b. Exemple:

- 1. Trouver équation de la tangente (T) à la courbe (C_f) de f au point $x_0 = 1 \text{ avec } f(x) = 2x^2.$
 - ** Exercices : 3,4 de la série

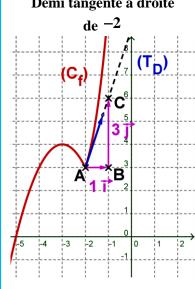
Interprétation géométrique des nombres dérivées $f_d'(x_0)$ et $f_g'(x_0)$:

- \diamond Si f est dérivable à droite de x_0 on a une demi-tangente à droite de x_0 de coefficient directeur $f_d'(x_0)$.
- équation du demi tangente à droite de $-\mathbf{x}_0$ est (\mathbf{T}_d) : $\mathbf{y} = (\mathbf{x} \mathbf{x}_0) \mathbf{f}_d'(\mathbf{x}_0) + \mathbf{f}(\mathbf{x}_0)$ avec $\mathbf{x} \ge \mathbf{x}_0$.
- Si f est dérivable à gauche de x_0 on aune demi-tangente à droite de x_0 de coefficient directeur f_g ' (x_0) .
- équation du demi tangente à gauche de $-\mathbf{x}_0$ est $\left(\mathbf{T}_{\mathbf{g}}\right)$: $\mathbf{y} = \left(\mathbf{x} \mathbf{x}_0\right)\mathbf{f}_{\mathbf{g}}'\left(\mathbf{x}_0\right) + \mathbf{f}\left(\mathbf{x}_0\right)$ avec $\mathbf{x} \leq \mathbf{x}_0$.
- \star Si $f_d'(x_0) \neq f_g'(x_0)$ donc f n'est pas dérivable en x_0 et le point $A(x_0, f(x_0))$ est appelé point anguleux.

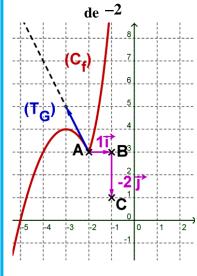
d. Exemple:

soit
$$\begin{cases} f(x) = (x+3)^3 + 2 & ; x \ge -2 \\ f(x) = -(x+3)^2 + 4 & ; x < -2 \end{cases}$$

Demi tangente à droite

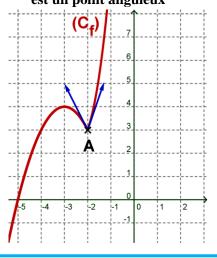


Demi tangente à gauche



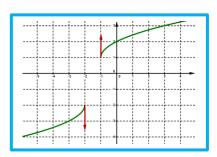
Demi tangente en -2 le point A(-2,3)

est un point anguleux



Remarque:

- si f n'est pas dérivable à droite (c.à.d. $\lim_{x \to x_0^+} \frac{f(x) f(x_0)}{x x_0} = \pm \infty$) dans ce cas on a demi tangente à droite de x_0 parallèle à l'axe des ordonnées
- si f n'est pas dérivable à gauche (c.à.d. $\lim_{x \to x_0^{\parallel}} \frac{f(x) f(x_0)}{x x_0} = \pm \infty$) dans ce cas on a demi tangente à gauche de
- x_o parallèle à l'axe des ordonnées.
- Exemple: exemple $f(x) = \sqrt{(x+1)(x+2)}$.



☐. Dérivabilité sur un intervalle – fonction dérivée première – dérivée seconde –dérivée n^{ième} d'une fonction :

A. Dérivabilité sur un intervalle :

a. Définition :

- f est une fonction dérivable sur I = a; b si et seulement si f est d dérivable en tout point x_0 de I.
- f est une fonction dérivable sur [a;b[si et seulement si f est dérivable sur I=]a;b[et f est dérivable à droite du point a .
- ullet f est dérivable sur a,b \Leftrightarrow f est dérivable sur a,b et f est dérivable à gauche de b
- $\bullet \ f \ est \ d\'erivable \ sur \ \big[a,b \big] \Leftrightarrow \ f \ est \ d\'erivable \ sur \ \big] a,b \big[\ et \ f \ est \ d\'erivable \ \grave{a} \ droite \ de \ a \ et \ \grave{a} \ gauche \ de \ b \ .$

B. La fonction dérivée première d'une fonction – la fonction dérivée seconde – dérivée n^{ième} d'une fonction:

a. Définition :

f est une fonction dérivable sur un intervalle I .

- La fonction g qui relie chaque élément x de I par le nombre f'(x) s'appelle la fonction dérivée de f et on note : g = f' . Ou encore $g : I \to \mathbb{R}$ $x \to g(x) = f'(x)$ g s'appelle la fonction dérivée de f on note : g = f' .
- La fonction dérivée de f'sur I s'appelle la fonction dérivée seconde (dérivée d'ordre 2) on note f'' ou f⁽²⁾
- En général : la dérivée d'ordre n de f est la fonction dérivée de $f^{(n-1)}(x)$ (la dérivée de la fonction dérivée d'ordre n-1) et on note $f^{(n)}(x) = (f^{(n-1)})^{'}(x)$.

Les opérations sur les fonctions dérivables :

a. Propriété:

Soient f et g deux fonctions dérivables sur I . on a :

- La fonction f + g est dérivable sur I et (f+g)'(x) = f'(x) + g'(x).
- La fonction αf est dérivable sur I et $(\alpha f)'(x) = \alpha f'(x)$ avec $\alpha \in \mathbb{R}$
- La fonction $f \times g$ est dérivable sur I et $(f \times g)'(x) = f'(x)g(x) + f(x)g'(x)$.
- La fonction $\frac{1}{g}$ est dérivable sur $I \ \forall x \in I, g(x) \neq 0$ et $\left(\frac{1}{g}\right)(x) = -\frac{g'(x)}{g^2(x)}$.
- La fonction $\frac{f}{g}$ est dérivable sur $I \ \forall x \in I, g(x) \neq 0$ et $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) f(x)g'(x)}{g^2(x)}$.

Dérivabilité des fonctions : polynomiales – rationnelles - $f^n(x)$ - fonctions trigonométriques : a. Propriété :

- Toute fonction polynomiale est dérivable sur son ensemble de définition $D_f = \mathbb{R}$ et $\left(ax^n\right)' = nax^{n-1}$ et n
- ullet Toute fonction rationnelle est dérivable sur son ensemble de définition $oldsymbol{D}_{\!f}$.
- f est une fonction dérivable sur un intervalle I.
 - ✓ La fonction f^n avec $n \in \mathbb{N}^*$ est dérivable sur I et on $a : (f^n)'(x) = nf^{n-1}(x)f'(x)$.
 - ✓ Si pour tout x de I; $f(x) \neq 0$ on a la fonction $f^p(x)$ avec $p \in \mathbb{Z}^*$ est dérivable sur I et $(f^p)'(x) = pf^{p-1}(x)f'(x)$

** Exercice : 6 de la série

- La fonction $f(x) = \cos(x)$ est dérivable sur \mathbb{R} avec $f'(x) = (\cos(x))' = -\sin(x)$.
- La fonction $f(x) = \sin(x)$ est dérivable sur \mathbb{R} avec $f'(x) = (\sin(x))' = \cos(x)$.
- La fonction f(x) = tan(x) est dérivable sur $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi ; k \in \mathbb{Z} \right\}$ avec $f'(x) = (tan(x))' = 1 + tan^2(x)$ ou encore $f'(x) = (tan(x))' = \frac{1}{cos^2 x}$.
- **b.** Exemple: Calculer: g'(x) pour $g(x) = (-2x^4 + 5x^2 + x 3)^7$.

VII. Dérivabilité de la composée de deux fonctions :

a. Théorème :

f dérivable en x_0 et g est dérivable en $f(x_0)$ alors la fonction $g \circ f$ est dérivable en x_0 et on a : $(g \circ f)'(x_0) = f'(x_0) \times g'(f(x_0)).$

- **b.** Application :
 - $\left(\sqrt{f(x)}\right)' = \frac{f'(x)}{2 \times \sqrt{f(x)}}$; $x \in D_{f'}$ et f(x) > 0.
 - $(\sin(ax+b))'$ $(\tan(ax+b))'$
 - $(\cos(ax+b))'$
 - ** Exercice : 7 de la série

V. La fonction dérivée de la fonction réciproque :

a. Théorème:

Soit f une fonction continue et strictement monotone sur I et f(I) = J), f^{-1} est la fonction réciproque de la fonction ($(x_0 \in I)$; $x_0 \mapsto f(x_0) = y_0$; $(y_0 \in J)$)

f est dérivable en x_0 $f(x_0) \neq 0$ alors la fonction f^{-1} est dérivable en $y_0 = f(x_0)$ et $(f^{-1})'(f(x_0)) = \frac{1}{f'(f^{-1}(y))}$.

b. Applications :

 $\mathbf{n} \in \mathbb{N}^* \text{ et } \mathbf{r} \in \mathbb{Q}^* \text{ et } \mathbf{f} \text{ est une fonction strictement positive et dérivable sur } \mathbf{I}$ $\mathbf{g'}(\mathbf{x}) = \left(\sqrt[n]{\mathbf{x}}\right)' = \left(\mathbf{x}\right)^{\frac{1}{n}}\right)' = \frac{1}{n}\mathbf{x}^{\frac{1}{n}-1}; \mathbf{n} \in \mathbb{N}^* \qquad \left(\sqrt[n]{\mathbf{f}(\mathbf{x})}\right)' = \left(\mathbf{f}(\mathbf{x})\right)^{\frac{1}{n}}\right)' = \frac{1}{n}\times\mathbf{f'}(\mathbf{x})\times\left(\mathbf{f}(\mathbf{x})\right)^{\frac{1}{n}-1}$ $\mathbf{g'}(\mathbf{x}) = \left(\mathbf{x}^r\right)' = \mathbf{r}\mathbf{x}^{r-1}; \mathbf{r} \in \mathbb{Q}^*$ $\left(\left[\mathbf{f}(\mathbf{x})\right]^r\right)' = \mathbf{r}\times\mathbf{f'}(\mathbf{x})\times\left[\mathbf{f}(\mathbf{x})\right]^{r-1}; \mathbf{r} \in \mathbb{Q}^*$

- c. Exemple:
 - 1. Calculer la fonction dérivée f ' de f .

$$f(x) = \sqrt[5]{x}$$
 et $f(x) = \sqrt[5]{x^2 + 1}$ et $f(x) = \sqrt[5]{(x^2 + 1)^7}$

** Exerciceu: 11,12 de la série

WI.

Tableau des fonctions dérivées des fonctions usuelles :

La fonction f	D _f Domaine de définition de f	La fonction dérivée f'	D _f . Domaine de définition de f '
f(x) = a	$\mathbf{D_f} = \mathbb{R}$	f'(x) = 0	$\mathbf{D}_{\mathbf{f}'} = \mathbb{R}$
f(x) = x	$\mathbf{D_f} = \mathbb{R}$	f'(x)=1	$\mathbf{D}_{\mathbf{f}^{+}} = \mathbb{R}$
$f(x) = x^{n}$ $n \in \mathbb{N}^* \setminus \{1\}$	$\mathbf{D_f} = \mathbb{R}$	$f'(x) = nx^{n-1}$	$\mathbf{D_{f^{\prime}}} = \mathbb{R}$
$n \in \mathbb{Z}^* \setminus \{1\} : f(x) = x^n$	$\mathbf{D_f} = \mathbb{R}$	$f'(x) = nx^{n-1}$	$\mathbf{D_{f'}} = \mathbb{R}^*$
$f(x) = \sqrt{x}$	$\mathbf{D_f} = \begin{bmatrix} 0, +\infty \end{bmatrix}$	$f'(x) = \frac{1}{2\sqrt{x}}$	$\mathbf{D}_{\mathbf{f}'} = \left]0, +\infty\right[$
$f(x) = \frac{1}{x}$	$\mathbf{D_f} = \mathbb{R}^*$	$f'(x) = -\frac{1}{x^2}$	$\mathbf{D}_{\mathbf{f}^{+}} = \mathbb{R}^{*}$
$f(x) = \sin x$	$\mathbf{D_f} = \mathbb{R}$	$f'(x) = \cos x$	$\mathbf{D}_{\mathbf{f}^{+}} = \mathbb{R}$
$f(x) = \cos x$	$\mathbf{D_f} = \mathbb{R}$	$f'(x) = -\sin x$	$\mathbf{D}_{\mathbf{f}^{+}} = \mathbb{R}$
$f(x) = \tan x$	$\mathbf{x} \neq \frac{\pi}{2} + \mathbf{k}\pi; \mathbf{k} \in \mathbb{Z}$	$f'(x) = 1 + \tan^2 x$	$\mathbf{x} \neq \frac{\pi}{2} + \mathbf{k}\pi$
$f(x) = \sqrt{g(x)}$	$x \in D_g / g(x) \ge 0$	$f'(x) = \frac{g'(x)}{2 \times \sqrt{g(x)}}$	$x \in D_{g} / g(x) > 0$
f(x) = a	$\mathbf{D_f} = \mathbb{R}$	f'(x) = 0	$\mathbf{D}_{\mathbf{f}'} = \mathbb{R}$
f(x) = x	$\mathbf{D_f} = \mathbb{R}$	f'(x)=1	$\mathbf{D}_{\mathbf{f}'} = \mathbb{R}$
$n \in \mathbb{N}^* \setminus \{1\} f(x) = x^n$	$\mathbf{D_f} = \mathbb{R}$	$f'(x) = nx^{n-1}$	$\mathbf{D}_{\mathbf{f}^+} = \mathbb{R}$
$n \in \mathbb{Z}^* \setminus \{1\} : \mathbf{f}(\mathbf{x}) = \mathbf{x}^n$	$\mathbf{D_f} = \mathbb{R}$	$f'(x) = nx^{n-1}$	$\mathbf{D_{f^{+}}} = \mathbb{R}^{*}$

** Exerciceu: 14,15,16 de la série

VI.

Applications de la fonction dérivée première :

Remarque:

- dans le reste de ce chapitre f est une fonction numérique de la variable réelle x.
- \bullet $\left(C_{_f}\right)$ est sa courbe représentative dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$.

<u>A.</u> La monotonie d'une fonction et le signe de sa fonction dérivée : **a.** Propriété :

f est une fonction dérivée sur un intervalle I .

- Si la fonction dérivée f'est strictement positive sur I alors la fonction f est strictement croissante sur I. (même si f's'annule en un points fini de I ne change pas la monotonie de f)
- Si la fonction dérivée f'est strictement négative sur I alors la fonction f est strictement décroissante sur I. (même si f's'annule en un points fini de I ne change pas la monotonie de f)
- Si la fonction f'est nulle sur I (sur I tout entier) alors f est constante.

b. Exemple:

Etudier les variations de f sur \mathbb{R} avec $f(x) = (2x+4)^2$.

B. Extremums d'une fonction dérivable :

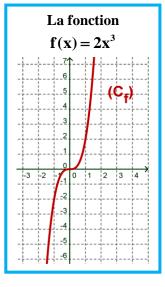
a. Propriété:

f est une fonction dérivée sur un intervalle ouvert I, a est un élément de I. Si f est dérivable au point a et admet un extremum au point a alors f'(a) = 0.

Remarque: Si f'(a) = 0 ne signifie pas que f(a) est un extremum de la fonction f.

b. Exemple:

$$f(x) = 2x^3$$
 on a $f'(x) = 6x^2$ d'où $f'(0) = 0$ mais $f(0)$ n' est pas un extremum de la fonction f .



c. Propriété:

f est une fonction dérivée sur un intervalle ouvert I, a est un élément de I. Si f' s'annule au point a et f'change de signe au voisinage de a alors f(a)est un extremum de la fonction f

Applications de la fonction dérivée deuxième :

A. Position relative de la tangente et la courbe – la concavité :

a. Propriété et définition :

f est une fonction deux fois dérivable sur un intervalle I.

 $\forall x \in I : f''(x) > 0$ (la fonction dérivée seconde) alors :

• La courbe (C_f) de f est située au dessus des tangentes des points x tel que $x \in I$.

Dans ce cas on dit que la courbe $\left(C_{_{f}} \right)$ de $_{f}$ est convexe (ou sa concavité est dans le sens des ordonnés positives . on note

 $\forall x \in I : f''(x) < 0$ (la fonction dérivée seconde) alors :

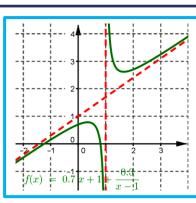
• La courbe (C_f) de f est située au dessous des tangentes des $x \in I$.

Dans ce cas on dit que la courbe $\left(\mathbf{C}_{\mathbf{f}}\right)$ de \mathbf{f} est concave (ou sa concavité est dans le sens des ordonnés négatives . on note / \.

b. Exemple: Exemple 1:

La figure ci-contre représente la courbe d'une fonction f.

- Sur l'intervalle $[1,+\infty[$: la courbe (C_f) de f est convexe. (ou sa concavité est dans le sens des ordonnés positives).
- Sur l'intervalle $]-\infty,1[$: la courbe (C_f) de f est concave. (ou sa concavité est dans le sens des ordonnés négatives).



Exemple 2:

Le tableau ci-contre représente le signe de la fonction dérivée seconde de f et la concavité de la courbe $\left(C_{_f}\right)$ de f

X	-∞ -	5 –1	1 2	2 +∞
f''(x)	-	0 +	- () +
Concavité de $\left(\mathrm{C_{f}}\right)$	\wedge	\vee	\wedge	∨

B. Points d'inflexions:

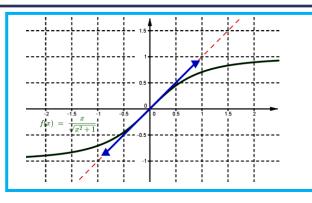
a. Propriété et définition :

 $f \ \ \text{est une fonction dérivable deux fois sur un intervalle ouvert} \ \ I \ \ et \ x_0 \in I \ .$ Si la fonction dérivée seconde f "s'annule en x_0 et f " change de signe au voisinage de x_0 alors le point d'abscisse $A\big(x_0,f\big(x_0\big)\big)$ est un point d'inflexion au courbe $\big(C_f\big)$; dans ce cas la tangente au point $A\big(x_0,f\big(x_0\big)\big)$ coupe (ou traverse) la courbe.

<u>b.</u> Exemple : Exemple 1 :

- Soit la fonction f définie par : $f(x) = \frac{x}{\sqrt{x^2 + 1}}$.
- • (C $_f$) est sa courbe représentative dans un repère orthonormé (O, \vec{i},\vec{j}) .

Exemple 2:



Le tableau suivant représente le signe de la fonction dérivée seconde de f et la concavité de la courbe $\left(C_{f}\right)$ de f

x	-∞ -5 -1		1	2 +∞
f"(x)	_	0 +	_	0 –
Concavité de $\left(\mathrm{C}_{\mathrm{f}} \right)$	\wedge	\vee	\wedge	\wedge

- Le point d'abscisse $x_0 = -5$ est un point d'inflexion au courbe (C_f) de f car f'' (-5) = 0 et f'' change de signe au voisinage de $x_0 = -5$.
- Le point d'abscisse $x_1=2$ n'est pas un point d'inflexion au courbe $\left(C_f\right)$ de f car f '' change de signe au voisinage de $x_1=2$

Centre de symétrie – axe de symétrie de la courbe d'une fonction :

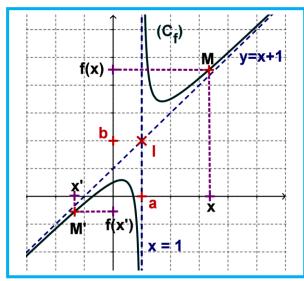
A. Centre de symétrie de la courbe d'une fonction :

Propriété:

Soit $\left(C_{_{f}}\right)$ la courbe représentative d'une fonction définie sur $D_{_{f}}$ dans un plan $\left(P\right)$ est rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) .

 $\text{Le point } I\Big(a,b\Big) \text{ est centre de symétrie au courbe } \Big(C_f\Big) \quad \Leftrightarrow \begin{cases} \forall x \in D_f \; ; \; 2a-x \in D_f \\ \forall x \in D_f \; ; \; f(2a-x)+f(x)=2b \end{cases}$

b. Exemple:



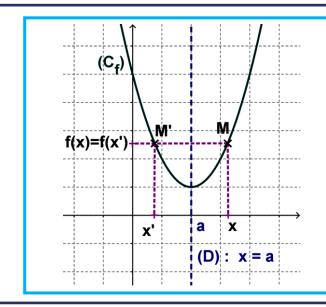
B. axe de symétrie de la courbe d'une fonction :

Propriété:

Soit (C_f) la courbe représentative d'une fonction définie sur D_f dans un plan (P) est rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) .

 $\text{La droite d'équation } D: x = a \text{ est axe de symétrie au courbe } \left(\begin{matrix} C_f \end{matrix} \right) \Leftrightarrow \begin{cases} \forall x \in D_f ; \ 2a - x \in D_f \\ \forall x \in D_f ; \ f(2a - x) = f(x) \end{cases}$

b. Exemple:



IX.

Branches infinies d'une fonction:

A. Branches infinies :

Définition:

Soit (C_f) la courbe représentative d'une fonction définie sur D_f dans un plan (P) est rapporté à un repère (O, \vec{i}, \vec{j}) .

Si au moins une des coordonnées d'un point M de la courbe de (C_f) tend vers l'infinie on dit que la courbe (C_f) admet une branche infinie.

B. Asymptote verticale:

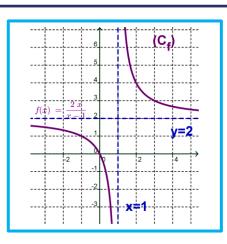
a. Définition :

Soit (C_f) la courbe représentative d'une fonction définie sur D_f dans un plan (P) est rapporté à un repère (O, \vec{i}, \vec{j}) .

Si $\lim_{x\to a^+} f(x) = \pm \infty$ et $\lim_{x\to a^-} f(x) = \pm \infty$ alors la droite d'équation x = a est une asymptote verticale à $\left(C_f\right)$ (à droite de a ou à gauche de a).

b. Exemple:

Exemple: asymptote verticale d'équation x = 1.



C. Asymptote horizontale

a. Définition:

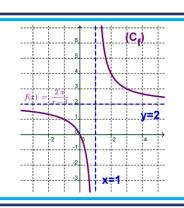
 $\text{Soit } \left(C_{_{f}} \right) \text{ la courbe représentative d'une fonction définie sur } D_{_{f}} \text{ (tel que } \left(\left[a, +\infty \right[\subset D_{_{f}} \text{ ou } \right] -\infty, a \right[\subset D_{_{f}} \right)$ dans un plan (P) est rapporté à un repère (O, \vec{i}, \vec{j}) .

Si $\lim f(x) = b$ (ou $\lim f(x) = c$) alors la droite d'équation y = b (ou y = c) est une asymptote horizontale

à (C_f) au voisinage de $+\infty$ (ou $-\infty$).

b. Exemple:

Asymptote horizontale d'équation y = 2 au voisinage de $\pm \infty$.



D. Asymptote oblique :

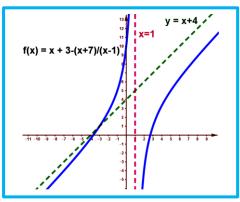
<u>a.</u> Définition :

- Soit $\left(C_f\right)$ la courbe représentative d'une fonction définie sur D_f (tel que $\left(\left[a,+\infty\right[\subset D_f \text{ ou }\right]\!-\!\infty,a\right[\subset D_f\right) \text{ dans un plan }\left(P\right) \text{ est rapporté à un repère }\left(O,\vec{i},\vec{j}\right).$
- $a \in \mathbb{R}^{+}$ ($a \neq 0$ et $a \neq \pm \infty$) et $b \in \mathbb{R}$

Si $\lim_{x\to\pm\infty}f(x)-(ax+b)=0$ alors la droite d'équation y=ax+b est une asymptote oblique à (C_f) au voisinage de $\pm\infty$.

b. Exemple:

Soit
$$f(x) = x + 3 - \frac{(x+7)}{(x-1)}$$
.



 (C_f) admet une asymptote oblique la droite d'équation y = x + 3 voisinage de $\pm \infty$

c. Propriété:

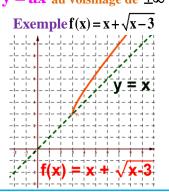
Si la droite d'équation y=ax+b est une asymptote oblique à $\left(C_{_f}\right)$ au voisinage de $\pm\infty$, donc pour déterminer a et b on calcule les limites suivantes :

- Pour déterminer a on calcule : $\lim_{x\to\pm\infty}\frac{f\left(x\right)}{x}=a\in\mathbb{R}^{*}$ (c.à.d. $a\neq0$ et $a\neq\pm\infty$), donc on a deux cas particulières.
- Pour déterminer a on calcule : $\lim_{x\to\pm\infty} (f(x)-ax) = b \in \mathbb{R}$ (c.à.d. $b\neq\pm\infty$). donc on a la troisième cas particulière.
- Les cas particulières
- > 1ère cas particulière : $a = \pm \infty$ on dit que (C_f) admet une branche parabolique de direction (B.P.D) l'axe des ordonnés .
- ightharpoonup 2ième cas particulière : a=0 on dit que $\left(C_f\right)$ admet une branche parabolique de direction (B.P.D) l'axe des abscisses .
- > $3^{i\`{e}me}$ cas particulière : $b=\pm\infty$ avec $a\in\mathbb{R}^*$, on dit que $\left(C_f\right)$ admet une branche parabolique de direction (B.P.D) la droite d'équation y=ax.

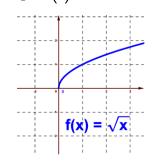
les cas particuliers (Remarque : B.P.D= branche parabolique de direction)

cas particulier 3: $a \in \mathbb{R}^*$ et $\mathbf{b} = \pm \infty$

 $\left(\mathbf{C}_{\mathbf{f}} \right)$ admet une B.P.D la droite y = ax au voisinage de $\pm \infty$



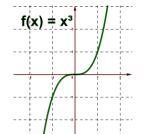
cas particulier 2 : a = 0(C_f) admet une B.P.D l'axe des abscisses Exemple $f(x) = \sqrt{x}$



cas particulier $1: a = \pm \infty$

 (C_f) admet une B.P.D l'axe des

Exemple
$$f(x) = x^3$$



Approximation affine d'une fonction dérivable en un point .(complément)

a. Définition:

f est une fonction dérivable au point a

- La fonction u tel que : $u: x \to f(a) + (x-a)f'(a)$ (ou encore (x-a=h); $v: h \to f(a) + hf'(a)$) est appelée la fonction affine tangente à la fonction f au point a.
- Quand x est très proche de a le nombre f(a)+(x-a)f'(a) est une approximation affine de f(x) au voisinage de a on écrit : $f(x) \approx f(a) + (x-a)f'(a)$.
- Ou encore le nombre f(a)+hf'(a) est approximation affine de f(a+h) au voisinage de zéro on écrit $f(a+h) \approx f(a) + hf'(a)$ avec x-a=h.

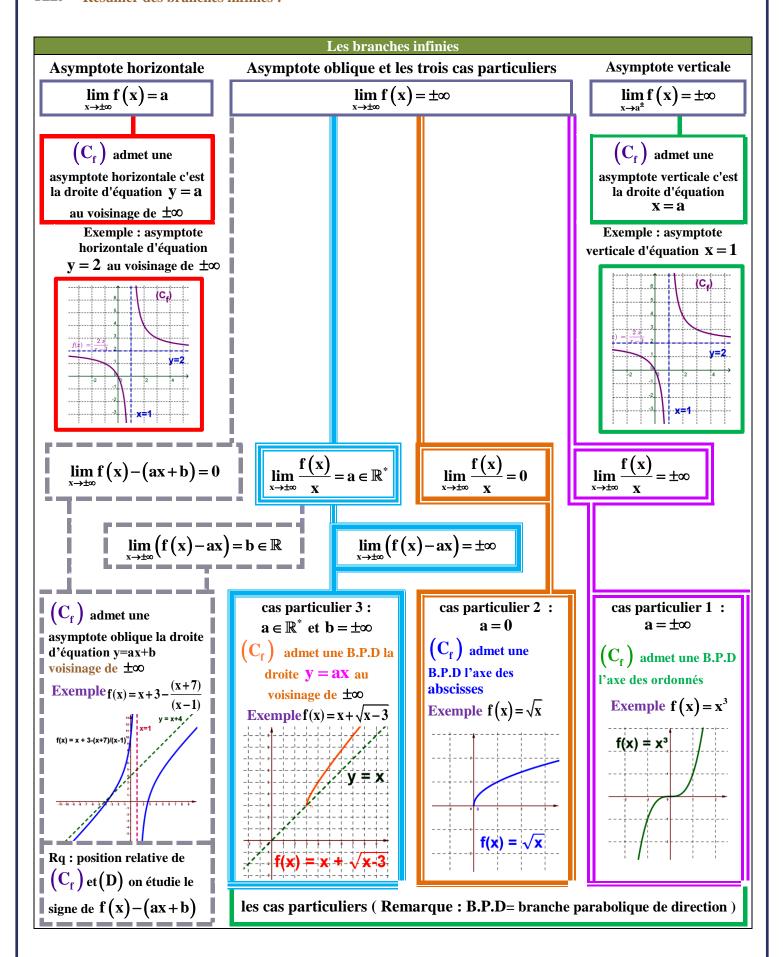
C. Exemple:

- **Exemple 1:**
 - 1. Trouver une approximation affine du nombre f(1+h) avec $f(x) = x^2$ et a = 1.
- **Exemple 2:** Technique de calcule: $(1+h)^2$ avec h très proche de zéro on calcule 2h+1.
 - 1. Trouver une approximation affine du nombre $\sqrt{9,002}$.

L. Remarque :

- Pour la fonction : $f(x) = x^2$ et a = 1 on $a : f(1+h) = (1+h)^2 \approx 1+2h$.
- Pour la fonction: $f(x) = x^3$ et a = 1 on a: $f(1+h) = (1+h)^3 \approx 1+3h$.
- Pour la fonction : $f(x) = \sqrt{x}$ et a = 1 on $a : f(1+h) = \sqrt{1+h} \approx 1 + \frac{h}{2}$.
- Pour la fonction : $f(x) = \frac{1}{x}$ et a = 1 on a : $f(1+h) = \frac{1}{1+h} \approx 1-h$.

Résumer des branches infinies :



Exercice1:

Lycée

1- Montrer en utilisant la définition que la fonction $f(x) = x^2 + x - 3$ est dérivable en a = -2.

2) soit f une fonction définie par :

$$\begin{cases} f(x) = \sqrt{x} \dots x \ge 1 \\ f(x) = \frac{1}{4}x^2 + \frac{3}{4} \dots x < 1 \end{cases}$$

étudier la dérivabilité de f en $x_0 = 1$

3) Soit f la fonction définie sur \mathbb{R} par :

$$\begin{cases} f(x) = 3x^2 + x; x < 0 \\ f(x) = -2x^2 + 3x; x \ge 0 \end{cases}$$

étudier la dérivabilité de f en $x_0 = 0$

Exercice 2: soit f une fonction définie par :

$$\begin{cases} f(x) = (1+x)\sqrt{1-x^2} \dots 0 \le x \le 1 \\ f(x) = \sqrt{x^3 - x} \dots x > 1 \end{cases}$$

1) déterminer le domaine de définition de f 2) étudier la dérivabilité de f à droite en $x_0=0$ et donner une interprétation géométrique du résultat 3) étudier la dérivabilité de f à droite et à gauche en $x_0=1$ et donner une interprétation géométrique

Exercice3: soit f une fonction définie par :

$$f(x) = |x^2 - 1|$$

1)étudier la dérivabilité de f à droite en $x_0 = 1$ et donner une interprétation géométrique du résultat 2)étudier la dérivabilité de f à gauche en

 $x_0 = 1$ et donner une interprétation géométrique du résultat

3) étudier la dérivabilité de f en $x_0 = 1$ et donner une interprétation géométrique du résultat

4)donner l'équation de la demie tangente à droite a la courbe de f en en $x_0 = 1$

4)donner l'équation de la demie tangente à gauche a la courbe de f en en $x_0 = 1$

Exercice4 : Calculer le nombre dérivé de $f(x) = x^3 + x$ en a = 1 en utilisant la deuxième formulation de la dérivation

Exercice5: donner une approximation de sin3 **Exercice6**: Etudier le domaine de dérivation de f et déterminer sa fonction dérivée dans les cas suivants :

- 1) $f(x) = x^2 + 3x 1$ 2) $f(x) = 4\sin x$
- 3) $f(x) = x^4 \cos x$ 4) $f(x) = \sqrt{x} + x^3$
- 5) $f(x) = \frac{1}{\sqrt{x}}$ 6) $f(x) = \frac{6}{4x^2 + 3x 1}$
- 7) $f(x) = \frac{4x-3}{2x-1}$ 8) $f(x) = \sqrt{x^2-4}$
- 9) $f(x) = (2x+3)^5$

Exercice7: Déterminer les fonctions dérivées des fonctions suivantes :

- 1) $f(x) = \sin(2x^2 1)$
- $2) f(x) = \cos\left(\frac{1}{x^2 + 2}\right)$
- 3) $f(x) = \tan \cos(x)$

Exercice8 :Soit f la fonction définie sur \mathbb{R} par : f(x) = cosx

1)montrer que f est une bijection de $[0, \pi]$ vers [-1,1]

2)calculer : $\left(f^{-1}\right)'(0)$

Exercice9 : soit f une fonction définie par :

$$f(x) = x^3 + x^2$$

- 1- Dresser le tableau de variation de f
- 2- Montrer que f est une bijection de \mathbb{R}^+ vers \mathbb{R}^+ et calculer f(1).
- 3- Déterminer $(f^{-1})'(2)$

Exercice10: Soit la fonction $g(x) = \cos(2x)$

- 1- Dresser le tableau de variation de g dans $[0, \pi]$
- 2- Monter que g est une bijection de]0, $\pi/2$ [Vers] 1,1[.

3- Vérifier que $(\forall y \in]0,\pi/2[)$ $(g'(y) \neq 0)$ et déterminer $(g^{-1})'(x)$ pour x dans]-1,1[.

Exercice 11: Déterminer les domaines de dérivabilité et les fonctions dérivées des fonctions suivantes :1) $f(x) = \sqrt[3]{3x^2 + x - 4}$

2)
$$f(x) = \sqrt[4]{\frac{2x-1}{x^2-x}}$$

Exercice12: résoudre dans \mathbb{R} les équations suivantes : (E_1) : $\sqrt[3]{3+x} - \sqrt[3]{3-x} = \sqrt[6]{9-x^2}$

$$(E_2)$$
: $2x\sqrt{x} - 3x\sqrt[4]{\frac{1}{x}} = 20$

Exercice 13 : Déterminer les limites suivantes :

1)
$$\lim_{x \to 1} \frac{\sqrt[3]{x^2} - 1}{\sqrt[4]{x} - 1}$$
 2) $\lim_{x \to +\infty} \frac{\sqrt[4]{x} - \sqrt[3]{x + 1}}{\sqrt{x} - \sqrt[6]{x + 1}}$

3)
$$\lim_{x \to +\infty} \sqrt{x^2 + 1} - \sqrt[3]{x^2 + 1}$$
 4) $\lim_{x \to +\infty} \sqrt[3]{x^3 + x^2} - x$

Exercice14: soit f une fonction définie sur

$$I =]-\pi; \pi[par : \begin{cases} f(x) = 2\frac{\cos x - 1}{\sin x}; si...0 < x < \pi \\ f(x) = \frac{x|x+1|}{x-1}; si...-\pi < x \le 0 \end{cases}$$

1)monter que f est dérivable en $x_0 = 0$ et donner l'équation de la tangente a la courbe de f en $x_0 = 0$

2)a)étudier la dérivabilité de f en $x_0 = -1$ b)donner les équations des demies tangentes à a la courbe de f en en $x_0 = -1$

Exercice15: soit f une fonction définie par :

$$f(x) = \sqrt{3x - 2} \left(\frac{2x + 1}{x - 1}\right)^3$$

1) déterminer le domaine de définition D_f de f

2) déterminer le domaine de dérivation de f et déterminer sa fonction dérivée

Exercice16: en utilisant la dérivée calculer les limites suivantes :

1)
$$\lim_{x \to -1} \frac{(x+2)^{2018} - 1}{x+1}$$
 2) $\lim_{x \to \frac{\pi}{6}} \frac{2\sin x - 1}{x - \frac{\pi}{6}}$